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Abstract-Weight functions are derived for edge cracks and internal cracks in the vicinity of
interfaces of dissimilar materials. The first terms of a power series representation are determined by
direct adjusting the weight function to reference stress intensity factors and geometric conditions.
FE-calculations with constant internal pressure and constant shear on the crack faces provide the
necessary stress intensity factor input. Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION

Complex stresses occur at the interface of two bonded dissimilar materials which are
mechanically or thermally loaded. These stresses become singular, especially near the free
edges. For joints where one or both materials are ceramic, the failure starts at small cracks
in this brittle material. In order to be able to evaluate the failure behaviour, it is necessary
to know the stress intensity factors for natural cracks in the vicinity of the interface. Most
of the methods of determination of stress intensity factors require a separate calculation
for each stress distribution and each crack length. The weight function method developed
by Bueckner (1970) simplifies considerably the determination of stress intensity factors. A
weight function exists for any crack problem specified by the geometry of the component
and a crack type. If this function is known, the stress intensity factor can be obtained by
simply multiplying this function by the stress distribution and integrating it along the crack
length. Weight functions are widely used for homogeneous bodies but can hardly be found
in the literature for cracks in inhomogeneous materials. Approximate weight functions will
be derived below by direct adjustment to simple reference loading cases.

2. WEIGHT FUNCTIONS FOR EDGE CRACKS

Edge cracks parallel to an interface between dissimilar elastic materials, Fig. I, show
mixed-mode stress intensity factors even under pure normal stress or pure shear loading. If
the crack faces are loaded with the normal stress (Jy, the stress intensity factors are given by
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Fig. I. External subinterface crack; geometric data.
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(1)

where h}a l , hi7) are the weight functions. For shear stresses T acting at the crack faces one
can write

K(r) = fa h(')(x a)T(X) dxII II .,

o
(2)

defining the weight functions as h}'), hW. Under combined crack-face loading, the stress
intensity factors from eqns (1) and (2) can be superimposed which results in

K, = I: (h)a) (x, a)O'y(x) + hi'l(x, a)T(x» dx

ra

KII = Jo (hi7l(.x, a)O'(y) (x) +hW(x, a)T(x) dx.

(3)

(4)

The weight functions can be obtained from the stress intensity factors and the displacements
of the crack borders in the x- and y-directions of a specific load-the reference load (Rice,
1973). In the case of homogeneous materials the mode-I weight function is related only to
the displacements v normal to the crack face and the mode-II weight function to the
displacements u in the crack face line. For cracks near the interface we have to expect also
an interrelation to exist between the displacements which may be written in a general form

ou(') DU la)

h(a) - m -- + m --
, - 3 ~ 4 :1

oa ua

(5)

(6)

(7)

(8)

where the coefficients ml, ... , mg will depend on the ratio of the Young's moduli E2/E1 and
Poisson ratios VI' V2 as well as on the geometric data and the applied load. The indices (T)

and (a) describe the loadings which are responsible for the crack opening displacements.

2.1. Set-ups for the weight functions
For this type of mixed-mode problem the direct adjusting method (Fett, 1992) is an

appropriate tool to generate analytical expressions for the four weight function components.
Therefore, we will use the following set-ups

(9)

(10)
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N') = - '" D(')(I_x1a)v-l/2
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(11)

(12)

(13)

Let us assume that the loading cases for constant pressure (a = const.) and constant shear
(, = const.) directly on the crack faces are known. Then, a sufficient number of conditions
are known in order to be able to compute all coefficients for the approximated represen
tation. Here we will restrict ourself to a two-term weight function of the form

hlal = )!a( I +D(a) J l-x/a+D(a4(I-x/'a)3/2)1 ~ 1,1 , 1,_
na ,jl-x/a

he,) = )!a( 1 . +D(') JI-x/'a+D(') (l-x/a)3/2)II ,----------- II, 1 II, 2 '
na ,j l-x/a

(14)

(15)

(16)

(17)

It has been shown for mode-I (FeU et aI" 1987) and mode-II loading (FeU, 1990) that the
second derivative of the displacements must vanish for the two reference loading cases
(a y = const., , = const.), This may be repeated here for the case of the displacements v
normal to the crack surface. It has been shown (FeU, 1992) that

a2v 2+v-v2 8, 1- v2 aax
-----

ax2 E ax E ay

a3v 2+v-v2 a2, l-v2 02,
(18)-+----,

ox3 E ox2 E oy2

In the chosen reference cases, ay = const. and, = const. along the crack faces and thus we
obtain, for free surface conditions along the line x = 0,

a,
-;;- = 0,
ox

"Ix < a (19)

and consequently

oax
-~- = 0,
oy

~?0-,
- = 0 for x = 0,
oy2

Vy (20)
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[j3v
- = 0 for x = O.
ox3

(21)

The same can be shown for the displacements u in the x-direction. Introducing this into
eqns (5)-(8) leads to

02 h}<I) _ 02 h}~) _ 02 h}T) _ 82 hW _ 0
------------
8x2 ox2 ox2 GX 2

for x = O. (22)

Equation (22) leads to four relations between the coefficients D v :

LDv (v-l/2)(v-3/2) = 0, (23)

If the reference stress distributions oix) and rex) are constant, eqns (1) and (2) lead to
four additional equations:

(24)

where the geometric functions Yare defined as

K(<I) = (J ~ Y(<I) K(<I) = (J J'; yC<I)
1 y,\/U/, II Y II

(25)

From eqns (23) and (24), the coefficients are obtained as

(u) _ ~ fi. (<IjDU . l - 4.y2 YlI ,

5AD(!) - - - Y(T)
1.1 - 4 2 I,

(a) _ 5 Fr (G)

DU . 2 -12.y2 YlI

5AD(T) _ _ _ yeT)
1,2 - 12 2 I

(T) _ 5 Fr (T) (T) _ 5 Fr (T) 5DlI.1 -4.y2YlI -2, DlI,2 -12.y2Yll-3' (26)

2.2. Example ofapplication
Finite element computations were used to determine the weight functions for edge

cracks near an interface. The data were obtained for a Young's modulus ratio EIfE2 = 100
and VI = 0.2, V2 = 0.4. The crack was located in material!. The resulting geometric functions
are plotted in Fig. 2(a) as a function of the distance from the interface normalised on the
crack length. As could be expected from Saint Venant's principle, the influence of the
different material 1 on the stress intensity factors can be neglected for d/a > 3. For constant
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Fig. 2. (a) Geometric function for edge cracks; geometric data: aiL';; 0.1, HI = H2 = 2L, material
data: E,fE2 = 100, VI = 0.2, V2 = 0.4. (b) Geometric function for edge cracks; geometric data: as

(a), crack in material 2.

pressure at the crack faces the mode-I stress intensity factor K, tends against the value of
the homogeneous material and KII vanishes. In the case of constant shear stresses at the
crack, the mode-II stress intensity factor KII approaches the value of the homogeneous
material and K, vanishes.

The resulting weight functions are plotted in Fig. 3(a) for a crack with d/a = 1. Note
that the results in Fig. 2(a) and Fig. 3(a) are for a semi-infinite plate or for a finite plate
with a/L ~ 0.1. For the cracks located in material 2, the corresponding results are shown
in Figs 2(b) and 3(b).

3. WEIGHT FUNCTIONS FOR INTERNAL CRACKS

The geometry of an internal subinterface crack is illustrated in Fig. 4. The rep
resentation of the stress intensity factors by the weight functions are the same as in the case
of the subinterface edge crack.

3.1. Set-ups for the weightfunctions
In the special case of a symmetrically loaded crack we use the set-ups

(27)

(28)
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Fig. 3. (a) Weight function for edge cracks. Geometric data: aiL,,; )2.1, HI = H2 = 2L, E l fE2 = 100,
VI = 0.2, V2 = 0.4; dla = I, weight function normalised: h' = h va. (b) Weight function for edge

cracks. Geometric data: as (a), crack in material 2.

hW= 2 ( 1 +DW~1-(x/a)2).
~na jl-(x/a)2

(29)

(30)

Here only one energy condition is necessary since the set~up fulfills all symmetry conditions

Table 1. Geometric function for subinterface edge~cracks. Geometric
data: aiL,,; 0.1, HI = H2 = 2L, El fE2 = 100, VI = 0.2, V 2 = 0.4

dia y;o) yla' y;'1 ylC)
1I II

0.0025 10.71 7.290 -4.514 8.6845
0.010 10.93 6.786 -2.838 5.891
0.100 9.952 4.769 -0.898 2.811
0.333 6.682 2.491 0.2165 2.65
1.000 3.437 0.5514 0.2195 2.185
2.000 2.536 0.1384 0.0769 2.0116
3.000 2.273 0.052 0.031 1.986

10.00 2.004 0.002 0.0013 1.974
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Table 2. Geometric function for subinterface edge-cracks. Geometric
data: as Table 1, crack in material 2

el/a YjlT) Y(G} y\" yl-)
II II

--,_._--- .---

0.0025 1.298 -0.6203 0.358] ].370
0.010 1.322 -0.576 0.2602 1.403
0.100 ] .483 -0.4316 0.1039 l.S 13
0.333 1.368 -0.3337 0.034] 1.675
1.000 1.696 -0.1663 -0.0397 1.865
2.000 ] .888 -0.05654 -0.0306 1.9486
3.000 1.98] -0.0225 -0.0143 1.965

10.00 ] .935 -0.001 -0.0006 1.971

materiel 1

~----._- l

L..n 20 .1.... r-
d =A====::::::>B

Fig. 4. Internal subinterface crack; geometric data.

a priori. We obtain the coefficients

2
DCT) - - ycn_2Il-fi /I .

(31)

(32)

(33)

(34)

3.2. Example ofapplication
Internal subinterface cracks under pure tensile and pure shear loading were investigated

by Isida and Noguchi (1983) applying the Body Force Method. From their data, we use
HI = H 2 -+ Xi, EtlE2 = 4, VI = V2 = 0.3 and d/2a = 0.2:

n~) = 2.432, Yi~) = 0.315, YiT
) = 0.250, YW = 1.932.

The resulting weight function is plotted in Fig. 5.

(35)
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Fig. 5. Weight function for internal cracks. Geometric data: H, = H2 -> (x;"E,!E2 = 4, V, = V, = 0.3 ;
dj2a = 0.2, weight function normalised: h' = h J a.
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